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Abstract: This article investigates the effect of bearing Location and length on the shaft life under multi-axial 

non-proportional loading. The goal of this study is to increase long shaft life by deciding best location for bearing and its length. 

Loading condition and shaft properties was assumed according to helicopter. The most common case for this study observed in 

tail rotor of the Helicopter. Tail rotor drive shaft depended on helicopter type consist of 3 to 5 sections due to high length. 

Normally these sections assumed identical for simple production but it is shown that using non-identical sections is more proper 

than the other one. Optimization of shaft life and mass with design variable of the bearing locations and length is performed by 

ANSYS Workbench software and it is observed that these design variables have a major effect in objective functions. In the next 

step, we optimize maximum bearing pressure by two new advance methods named Genetic algorithm (GA) and Particle swam 

algorithm (PSO) and compare these algorithm abilities. 
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1. Introduction 

Many structures are subjected to alternative loading such as 

Tail rotor drive shaft. It has around 7 to 10 meter length to 

compensate the torque produced by the main rotor. Long 

length makes it worth to optimize it. Generally Tail rotor drive 

shaft underwent variable amplitude non-proportional loading 

but it does not make noticeable error if we analysis constant 

amplitude loading at working condition load. Other 

hypothesis in this article can be reported as: 

1. Stress concentration factor does not depend on shaft size 

so the optimization of simple shaft can be extended to 

real one. 

2. There is not any micro crack in the drive shaft so using 

stress and strain life methods is adequate for life 

estimation 

3. Shear stress produced by radial force in the shaft is low 

in comparison to bending moment produced by this 

force. 

Several investigations has been done in this field. Prasanth 

and Prabhu designed an automotive manual transmission shaft 

for its better performance. They do Sensitivity analysis and 

optimization on the best among material to optimize the 

constraint in the aim to get minimum weight and stress and 

results revealed that the Ti6Al4V has the better result than 

other materials, which were considered [1]. Rangaswamy and 

Vijayarangan minimized the weight of shaft that was 

subjected to the constraints such as torque transmission, 

torsional buckling capacities, and fundamental lateral natural 

frequency by genetic algorithm. It was shown that The usage 

of composite materials and optimization techniques has 

resulted in considerable amount of weight saving in the range 

of 48 to 86 % when compared to conventional steel shaft [2]. 

Ooi et.al optimized a hollow shaft with a rib at both ends. The 

torsional stress of the three-dimensional shaft modeled was 

determined using finite element analysis (FEA) and validated 

by experimental testing. The hollow shaft thickness, rib 

thickness, depth of spokes, rib fillet radius, and number of 

spokes are the five of parameters considered in the torsional 

strength analysis of the rib [3]. Li et.al presented a shear based 

evolutionary algorithm for the cross-section design of shafts 

subjected to torsion. In the applied method, finite element 
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analysis was employed to find the shear stress distribution 

throughout the cross sectional area of the shaft. A number of 

typical examples demonstrate that proposed approach was 

effective in solving design problems for both 

simply-connected and multy-connected cross-sections 

involving reshaping of both interior and exterior boundaries 

[4]. Lindsey and Fatemi investigated the effect of periodic 

overloads on fatigue behavior of steels. Life predictions were 

performed by implementing the linear damage rule along with 

the constant amplitude fatigue data and curves and then 

compared to experimental results. It was observed Use of the 

LDR and SWT mean stress parameter increased the accuracy 

of life predictions 

For some cases.[5]. Li et.al deals with simulation for cyclic 

stress/strain evolutions and redistributions, and evaluation of 

fatigue parameters suitable for estimating fatigue lives under 

multi-axial loadings. The local cyclic elastic–plastic 

stress–strain responses were analyzed using the incremental 

plasticity procedures of ABAQUS finite element code for both 

smooth and notched specimens. It was shown the equivalent 

strain range of ASME code approach based on the distortion 

energy, can provide good predictions of fatigue life by taking 

into account some modifications for non-proportional effects, 

and using the cyclic stress/strain ranges by more accurate 

simulations [6]. 

Khan and Sahai made a comparison between different 

modern populations based Optimization methods applied to 

the design of scan able circular antenna arrays. Simulation 

results show that differential evolution and particle swarm 

optimization have similar performances and both of them had 

better performance compared to Genetic algorithms when all 

algorithms are allowed equal computation time [7]. Zhijie et.al 

showed By analyzing and comparing two kinds of important 

swarm intelligent algorithm, the selecting operation in GA has 

the character of directivity, and the comparison experiment of 

two kinds of algorithm is designed in the article, and the 

simulation result shows that the GA has strong ability of 

global searching, and the convergence speed of PSO is very 

quick without too many parameters, and could achieve good 

global searching ability [8]. 

Panda and Padhy comprised particle swarm optimization 

and genetic algorithm for FACTS-based controller design. 

The design problem of the FACTS-based controller was 

formulated as an optimization problem and both PSO and GA 

optimization techniques were employed to search for optimal 

controller parameters. The performance of both optimization 

techniques in terms of computational effort, computational 

time, and convergence rate was compared. It was shown the 

computational time for GA was low compared to the PSO 

optimization algorithm. The higher computational time for 

PSO was due to the communication between the particles after 

each generation [9]. 

2. Masterial Selection 

Different materials are being used in manual transmission 

shaft from an earlier time. In Aerospace field, using high 

strength Aluminum alloy is so frequent due to reduction 

weight importance. One of the most popular kinds of these 

alloys that are mostly used in aerospace industry is AL 

7075-T6 alloy. Adding chromium cause the AL 7075-T6 alloy 

has a high strength and good corrosion cracking resistance. 

Heat treatment has a major effect in this alloy. Chemical 

composition, mechanical properties and fatigue properties of 

AL 7075-T6 alloy is shown in table 1, 2 and 3 respectively. 

Table 1. Chemical composition of AL 7075-T6 alloy [10]. 

Alloy AL Si Fe Cu Mn Mg Cr Zn Ti other 

AL7075-T6 Base 0.4 0.5 1.5 0.3 2.5 0.18 5.5 0.1 0.5 

Table 2. Mechanical properties of AL 7075-T6 alloy [10]. 

Alloy Ultimate tensile strength Tensile Yield strength Elongation at break Modulus of elasticity Poison ratio 

AL7075-T6 572(MPa) 503(MPa) 11% 71.7(GPa) 0.33 

Table 3. Cyclic and fatigue properties of AL 7075-T6 alloy [10]. 

Alloy b c ��
� (MPa) ��

�  ��(MPa) 

AL7075-T6 -0.095 -0.987 776 2.57 108.1 

 

3. Applied Models 

In this section, seven life estimation models that three of 

them are based on strain-life prediction and others based on 

stress-life prediction are discussed. 

3.1. Stress-Life Estimation Models 

Stress-life models were the first type of life estimation. In 

these methods, S-N curve of the material is used to estimate 

the life of the specimen. Equation 1 to 3 represents Modified 

Goodman, Gerber and Morrow equations [11]. 
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Where S�  is alternative stress, Smis mean stress, Suis 

ultimate strength, Sfis fatigue limit, n is factor of safety and �� 
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is true fracture strength. 

3.2. Strain-Life Estimation Models 

The strain-life approach involves the techniques for 

converting the loading history, geometry, and materials 

properties input into a fatigue life prediction. The 

Coffin-Manson total strain-life method was proposed as 

equation 4[11]. 

∆�
� = ���

� �2���
� +  ���2���

!
            (4) 

Where Nfis the fatigue life, ���  is the fatigue strength 

coefficient, E is the modulus of elasticity, b is the fatigue 

strength exponent, ��  is the fatigue ductility coefficient, and c 

is the fatigue ductility exponent. 

In conjunction with the local strain-life approach, many 

models have proposed to quantify the effect of mean stresses 

on fatigue behavior. The commonly used models in the ground 

Aerospace industry are those by Morrow [6] and by Smith, 

Watson, and Topper [11]. These two models are described in 

the following sections. Morrow has proposed the following 

relationship when a mean stress is expressed in Eq (5)[11]. 

 " = ���#�

� �2���

� +  ���2���
! 	            (5) 

Smith, Watson, and Topper [6] proposed another mean 

stress model, which is called Smith-Watson-Topper (SWT), 

mean stress correction. It is mathematically defined in Eq (11). 
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�� + ��� ��'�2���
�(!

     (6) 

Where max �%"&  is the maximum stress, and  "  is the 

strain amplitude. 

3.3. Journal Bearing Relations[12] 

In this article besides the shaft optimization, we utilize 2 

modern population basedOptimization methods (PSO and GA) 

to optimize Journal bearings. In journal bearing, most of 

variables can be determine by Somerfield number, which is 

function of Temperature. We can distinguish two groups of 

variables in the design of sliding bearings. In the first group, 

those whose values either are given or are under the control of 

the designer such as viscosity, rotary speed, pressure, and 

bearing dimension and those whose values are depend of the 

first group such as friction coefficient, the temperature rise, 

minimum film thickness, and volume flow rate. We utilize 

SAE type lubricant. It’s relation with temperature is disclosed 

in Equation 7 and the constants of this equation is shown in 

table 4. 

) = )*+, -
..0×23.456               (7) 

Minimum film thickness value, lubrication flow, flow ratio, 

and maximum pressure have exponential relation with 

Somerfield number. the Equation 8 shows their relation and 

Table 5-8 disclose the constants of this equations. 

789:8;<+ = 8=� + >            (8) 

Table 4. Values of the constants of equation 7. 

SAE number ?@(BCD. E) G 

10 0.0158 1158.5 

20 0.0136 1271.6 

30 0.0141 1360.0 

40 0.0121 1474.4 

50 0.017 1509.6 

60 0.0187 1564.0 

Table 5. Constant of equation 8 for Minimum film thickness values. 

L/D a b c 

0.25 0.4769 0.3142 -0.09841 

0.5 1.2870 0.1277 -0.09841 

1 -3.3570 -0.0411 4.11500 

6 -0.2756 -0.2880 1.2060 

Table 6. Constantof equation 8 for lubrication flow values. 

L/D a b c 

0.25 54.15 0.2188 -9.07 

0.5 114.40 0.1022 -53.87 

1 -117.10 -0.0778 188.9 

6 -4.535 -0.4657 73.01 

Table 7. Constant of equation 8 for flow ratio values. 

L/D a b c 

0.25 -1.818 0.2677 6.781 

0.5 -4.055 0.1147 8.276 

1 -92.16 0.0028 95.77 

6 -0.5823 -0.351 3.592 

Table 8. Constant of equation 8 for flow ratio values. 

S a b c 

0.25 -0.309 0.4169 1.048 

0.5 -0.7139 0.2427 1.241 

1 -8.612 0.017 8.906 

We employ coding in MATLAB software to optimize 

maximum pressure in journal bearing. There are two 

constrains in optimization. The first one applied to minimum 

film thickness. The second one defined for maximum 

temperature. These constrain displayed in equation 9 and 10 

respectively. 

ℎ* ≥ 0.00004L + 0.005         (9) 

N%"& < 107(℃)           (10) 

4. Results and Discussion 

4.1. Shaft Optimization 

Besides shaft radius, bearing location, number of bearings 

and length of bearing are other design variables. Geometry of 

shaft has been assumed simply cylindrical. In order to apply 

out of phase condition for life estimation we should make two 

separate fatigue analysis and connect them. Therefore, we are 
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able to apply the non-proportional loading and get the results 

in combination solution. Fig 1 displays the shaft geometry 

Fig. 1. The shaft geometry and its loading (a) bending (b) axial and rotation

Objective functions in shaft optimization considered as mass of the shaft and the safety factor. The e

except number of bearing which needs a new analysis execution has been shown in fig 2. Fig 3 shows the effects of two differe

selected design variables on the safety factor. Possible results for mass and s

(a)               

Fig. 2. Design variables effects on objective functions (a) mass (b) safety factor
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proportional loading and get the results 

in combination solution. Fig 1 displays the shaft geometry 

with fore bearing and its loading in two different fatigue 

analyses. 

(a) 

(b) 

The shaft geometry and its loading (a) bending (b) axial and rotation. 

Objective functions in shaft optimization considered as mass of the shaft and the safety factor. The e

except number of bearing which needs a new analysis execution has been shown in fig 2. Fig 3 shows the effects of two differe

selected design variables on the safety factor. Possible results for mass and safety factor are shown 

  

                                                  (b) 

Design variables effects on objective functions (a) mass (b) safety factor. 

Multi Objective Optimization of Long Hollow Simple Drive Shaft Under 

with fore bearing and its loading in two different fatigue 

 

 

Objective functions in shaft optimization considered as mass of the shaft and the safety factor. The effect of design variables 

except number of bearing which needs a new analysis execution has been shown in fig 2. Fig 3 shows the effects of two different 

afety factor are shown in fig 4 

 

 



 

(a)                        

Fig. 3. Design variables effects

If we repeated this process for 5 bearing and six bearing condition. Best value of design points were provided as reported in

Table 9. Mass of the shaft in different cases are shown in table 10. Safety factor provided by different methods are represented in 

fig 5. It is observed choosing five bearing is better than other circumstances.

(a)

Fig. 5. Safety fact
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                                                            (b) 

Design variables effects on objective functions (a) mass (b) safety factor. 

Fig. 4. Possible results for mass and safety factor. 

If we repeated this process for 5 bearing and six bearing condition. Best value of design points were provided as reported in

aft in different cases are shown in table 10. Safety factor provided by different methods are represented in 

fig 5. It is observed choosing five bearing is better than other circumstances. 

(a)                                      (b) 

Safety factor provided by (a) stress life methods (b) strain life methods. 
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If we repeated this process for 5 bearing and six bearing condition. Best value of design points were provided as reported in 

aft in different cases are shown in table 10. Safety factor provided by different methods are represented in 
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 4 bearing 

Bearing Location1(m) 0.19 

Bearing Length1(m) 0.08 

Bearing Location2(m) 3.3 

Bearing Length2(m) 0.12 

Bearing Location3(m) 3.7 

Bearing Length3(m) 0.21 

Bearing Location4(m) 5.5 

Bearing Length4(m) 0.13 

Bearing Location5(m) - 

Bearing Length5(m) - 

Bearing Location6(m) - 

Bearing Length6(m) - 

Inside radius(m) 0.035 

Outside radius(m) 0.053 

Table 10.

 4 bearing 

Mass(Kg) 97.8 

 

4.2. Bearing Optimization 

Bearing design is a touch and go process, in other words we 

should estimate the temperature rise then design the bearing 

and calculate the real temperature rise and compare the real 

temperature rise and the estimated temperature rise and make 

a better estimation in the next step. This process will go on 

until the error become suitably small. 

Fig. 6. Mean and best fitness variation for first bearing (a) GA algorithm (b) PSO algorithm

Fig. 7. Mean and best fitness variation for Second bearing (a) GA algorithm (b) PSO algorithm
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Table 9. Best value of design points. 

 5 bearing 

1.54 

0.15 

2.36 

0.22 

3.8 

0.09 

4.22 

0.12 

6.12 

0.14 

- 

- 

0.039 

0.054 

Table 10. Mass of the shaft in different implemented cases. 

 5 bearing 

88.95 

Bearing design is a touch and go process, in other words we 

should estimate the temperature rise then design the bearing 

and calculate the real temperature rise and compare the real 

and the estimated temperature rise and make 

a better estimation in the next step. This process will go on 

We implemented two population based (PSO and GA) 

optimization methods to optimize the bearing maximum 

pressure. 

In the past section, it is observed that case “five bearings” is 

better than four and six bearings. In this section, we make an 

appraisal between two methods. Change of best individual and 

mean individual of the population for the first bearing until 

fifth bearing has been shown in fig 6

(a)                            (b) 

Mean and best fitness variation for first bearing (a) GA algorithm (b) PSO algorithm

(a)                                 (b) 

Mean and best fitness variation for Second bearing (a) GA algorithm (b) PSO algorithm

Multi Objective Optimization of Long Hollow Simple Drive Shaft Under 

6 bearing 

1.11 

0.11 

2.3 

0.14 

2.7 

0.11 

4.1 

0.15 

5.77 

0.15 

6.7 

0.12 

0.036 

0.054 

6 bearing 

101 

We implemented two population based (PSO and GA) 

optimization methods to optimize the bearing maximum 

In the past section, it is observed that case “five bearings” is 

better than four and six bearings. In this section, we make an 

appraisal between two methods. Change of best individual and 

mean individual of the population for the first bearing until 

h bearing has been shown in fig 6-10. 

 

Mean and best fitness variation for first bearing (a) GA algorithm (b) PSO algorithm. 

 

Mean and best fitness variation for Second bearing (a) GA algorithm (b) PSO algorithm. 



 

Fig. 8. Mean and best fitness variation for third bearing (a) GA algorithm (b) PSO algorithm

Fig. 9. Mean and best fitness variation for forth bearing (a) GA algorithm (b) PSO algorithm

Fig. 10. Mean and best fitness variation for fifth bearing (a) GA algorithm (b) PSO algorithm

5. Conclusion 

This investigation was performed to analysis the influence 

of the bearing location and length on the shaft mass. It is 

observed that four bearing cause a better conclusion in the 

drive shaft optimization. Subsequently we optimized the 

maximum bearing pressure by two non-mathematical based 

optimization methods named GA and PSO. It is observed that 

PSO algorithm can find the optimized solution in lower time 

than GA algorithm but the probability of attaining local p

in this method is higher than GA algorithm.
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(a)                              (b) 

Mean and best fitness variation for third bearing (a) GA algorithm (b) PSO algorithm

(a)                                 (b) 

Mean and best fitness variation for forth bearing (a) GA algorithm (b) PSO algorithm

(a)                             (b) 

Mean and best fitness variation for fifth bearing (a) GA algorithm (b) PSO algorithm

This investigation was performed to analysis the influence 

of the bearing location and length on the shaft mass. It is 

observed that four bearing cause a better conclusion in the 

uently we optimized the 

mathematical based 

optimization methods named GA and PSO. It is observed that 

PSO algorithm can find the optimized solution in lower time 

than GA algorithm but the probability of attaining local points 

in this method is higher than GA algorithm. 

References 

[1] Prasanth, K., Prabhu, S. (2014). 
analysis of an automotive manual transmission shaft using 
Titanium alloy (TI6AL4V)
Mechanical And Production E
320-334. 

[2] Rangaswamy,T.Vijayarangan
Stacking Sequence of Composite Drive Shafts, Materials 
Science. Materials Science, vol. 11, no. 2, p. 

23 

 

Mean and best fitness variation for third bearing (a) GA algorithm (b) PSO algorithm. 

 

Mean and best fitness variation for forth bearing (a) GA algorithm (b) PSO algorithm. 

 

Mean and best fitness variation for fifth bearing (a) GA algorithm (b) PSO algorithm. 

 

. (2014). Design optimization and 
analysis of an automotive manual transmission shaft using 
Titanium alloy (TI6AL4V), International Journal of 
Mechanical And Production Engineering, vol. 4, no. 2, p. 

Vijayarangan, S. (2005).Optimal Sizing and 
Stacking Sequence of Composite Drive Shafts, Materials 

. Materials Science, vol. 11, no. 2, p. 1392-1320. 



24 Mohammad Baharvand et al.:  Multi Objective Optimization of Long Hollow Simple Drive Shaft Under 

Multi-axial Non-Proportional Loading 

[3] Ooi, J.B. Wang, X. Lim, Y.P.Tan, K.Ch. (2013). 3Parametric 
Optimization of the Output Shaft of a Portal Axle using Finite 
Element Analysis. Materials Science, vol. 59, no. 10, p. 
613-619. 

[4] Li, Q. Steven, G.P.Querin, O.M.Xie, Y.M. (2001). Stress based 
optimization of torsional shafts using an evolutionary 
procedure. International Journal of Solid and Structure, vol. 38, 
p. 5661-5677. 

[5] Fatemi, A.Plaseied, A.Khosrovaneh, A.K. (2005). Application 
of bi-linear log–log S–N model to strain-controlled fatigue data 
of aluminum alloys and its effect on life predictions. 
International Journal of Fatigue, vol. 27, p.1040-1050. 

[6] Rahman, M.M.Kadirgama, K.Noor, M.M.Rejab, R.M. (2009). 
Fatigue Life Prediction of Lower Suspension Arm Using 
Strain-Life Approach. European Journal of Scientific Research, 
vol. 30, no. 3, p. 437-450. 

[7] Pandura, M.A., Brizuela, C.A., Balderas, D.A. (2009). A 
comparison of genetic algorithms, particle swarm optimization 
and the diferential evolution method for the design of scannable 

circular antenna arrays, Progress In Electromagnetics Research, 
vol. 13, p. 171-186. 

[8] Zhijie, L., Xiaodong, L., Xiaodong, D. (2010Comperative 
research on particle swarm optimization and genetic 
algorithm,Computer and Information Science, vol. 3, no. 1, p. 
120-127. 

[9] Panda, S., Padhy, N.P. (2008). Comparison of particle swarm 
optimization and genetic algorithm for FACTS-based 
controller gesign, Applied Soft Computing, vol. 8, p. 
1418-1427. 

[10] Lindsey, J., Fatemi, A. (2008). Applicability of constant 
amplitude fatigue data to life predictions under variable 
amplitude service loading, Recent Advances in Mechanical 
Engineering Applications, ISBN: 978-960-474-345-2. 

[11] Li, B., Reis, L.Freitas, M. (2006). Simulation of cyclic 
stress/strain evolutions for multiaxial fatigue life predicti, 
International Journal of Fatigue, vol. 28, p. 451-458. 

[12] J. Shigley, E. Gordon, R. Mischke, Mechanical engineering 
design, McGraw-hill, 2004.

 


